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Abstract 

We describe an online planning algorithm and its use for 
selecting goals at runtime. Our focus is on the re-planning 
that must be performed in a short time-frame by the 
embedded system where computational resources are quite 
constrained. In particular, our algorithm addresses problems 
with well-defined goal requests without temporal flexibility 
that oversubscribe available resources.  By using a fast, 
incremental algorithm, goal selection can be postponed in a 
“just-in-time” fashion allowing requests to be changed or 
added at the last minute. This enables shorter response 
cycles and greater autonomy for the system under control. 

Introduction   

We address the problem of providing high-level, goal-
based autonomy for computationally limited robotic 
systems. Specifically, we enable on-board and remote goal 
triggering through the use of an embedded, dynamic goal 
set that can oversubscribe resources. From the set of 
conflicting goals, a subset must be chosen that maximizes a 
given quality metric.  
 In our first prototype instantiation, we assume that the 
requested goals have fixed start times and durations, 
making this a goal selection problem rather than a 
scheduling problem. Goals can conflict by exceeding 
limitations of shared resources (e.g. oversubscription). The 
quality metric we use in our initial prototype is strict 
priority selection. In other words, a goal can never be pre-
empted by a lower priority goal. High-level goals can be 
added, removed, or updated at any time, and the “best” 
goals will be selected for execution. 
 In addition, we provide robust and flexible execution of 
command sequences to satisfy goals with shared resources. 
Once we have committed to a given high-level goal, it 
must be broken down to the low-level commands 
understandable by the various subsystems (similar to 
hierarchical task network planning). However, rather than 
using rigid sequences with fixed command start times, we 
allow specification of flexible sequences that can be altered 
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to accommodate run-time variations in the use of the 
resources. 
 We develop these capabilities as prototype extensions to 
the Virtual Machine Language (VML) [Grasso 2008] 
execution system. VML is advanced, multi-mission flight 
and ground software developed for NASA flown on a 
number of past and current missions including: The Spitzer 
Space Telescope, Mars Odyssey, Stardust, Genesis, Mars 
Reconnaissance Orbiter, Phoenix, and Dawn. The 
prototype concept of a resource constraint is added to the 
language for both planning and execution purposes. A new 
VML task, the Goal Manager (GM), maintains the set of 
requested goals, their priorities, and their interactions (i.e. 
shared resource constraints). When a goal is submitted, the 
GM task quickly analyses the goal to determine whether or 
not it should be selected for execution. When the current 
time approaches the scheduled start time of a selected goal, 
the goal is satisfied by spawning the corresponding VML 
sequences. At this point, we are committed to the goal, and 
normal VML processing takes over. 
 The motivation for our work came from scenarios for 
operating the Earth Observing One satellite [GSFC], 
specifically from operations conducted by the Autonomous 
Sciencecraft (ASE) flight and ground software [Chien et al. 
2005]. We demonstrate our prototype implementation on 
these scenarios. In our approach, goal selection is 
postponed until the latest possible time, allowing goals to 
be added, removed or changed just prior to execution. This 
dynamic goal set enables additional autonomy capabilities 
such as on-board and ground-based event triggering, 
similar to ASE. For example, images taken of the Earth can 
be processed on-board to detect interesting events such as 
volcanic eruptions. These detections can then trigger 
changes to upcoming goals such as increasing the priority 
of requests for images of the same volcano. On the ground, 
sensorweb processing may detect similar events and 
upload new goal requests in a short time frame. 
 In these scenarios, start times of goals are assumed to be 
fixed. This is a reasonable assumption due to the nature of 
a spacecraft in orbit – opportunities for communications 
and science observations occur at specific (repeating) 
times. Also, we have found that many spacecraft resource 
constraints can be abstracted to the goal level. For 
example, the EO-1 spacecraft can point science 
instruments to only one target at a time. Thus, for target 



locations in close proximity, we must choose one of 
possibly many observation goals. We take advantage of 
these assumptions to develop efficient algorithms that 
provide advanced onboard autonomy capabilities. 

Resource Constraints 

A resource constraint is a value and a bound on that value 
over a period of time. Resource constraints exist as part of 
goals, activities, or sequences. A combination of effects of 
constraints on the same resource conceptually comprises a 
timeline (although we do not maintain an explicit 
representation of a timeline). Resource constraints have the 
following attributes: 
 
ResourceConstraint 

  <IdType, TimeType, ValueType> 

{ 

  IdType         id; 

  ResourceType   type; 

  TimeType       start; 

  TimeType       end; 

  ValueType      value; 

  ValueType      initial; 

  ValueType      min; 

  ValueType      max; 

}  

 
The id uniquely identifies the affected resource for the 
purpose of analyzing the interaction with other resource 
constraints. The type specifies the type of effect that the 
constraint has on the resource. The time range specifies the 
temporal scope of the constraint. The last four values 
specify, respectively: the constraint value, the initial value 
of the resource in the absence of all constraints, the 
minimum valid resource value, and the maximum valid 
resource value. 
 There are four fundamental types of resource 
constraints: 
 
enum ResourceType 

{ 

  Producer, 

  Consumer, 

  Assigner, 

  Requirement 

} 

 
A producer adds the constraint value to the resource at the 
start of the time range and subtracts it at the end (where the 
end may be infinity). A consumer subtracts at the start and 
adds at the end. An assigner simply assigns the constraint 
value at a specific time point. A requirement specifies only 
a constraint on the value of the resource over a period of 
time (i.e. it has no effect on the resource value). 

Resource Values and Operators 

A resource constraint can be defined for any type of value 
as long as the following set of operators is available: 
 
  += (used for producers) 

  -= (used for consumers) 

   = (used for assigners) 

   < (used for validity check) 

  == (used for validity check) 

 
These operators allow us to compute resource values from 
a set of interacting resource constraints, as well as to test 
for the validity of computed resource values. For example, 
for a single producer, we would add the produced value to 
the initial value and compare the result to the maximum 
value. If the constraint check fails, the resource value is 
considered invalid (i.e. has conflicting constraints). 
 We have demonstrated six common types of resource 
values: 
 
  int 

  double 

  string 

  set<int> 

  set<double> 

  set<string> 

 
The definitions of the operators are intuitive for simple 
types such as integers, doubles, and strings. For sets, we 
define them as follows: addition (+=) is set union, 
subtraction (-=) is set subtraction, assignment (=) replaces 
all values in one set with values from another, less (<) is a 
lexicographical ordering on two sets, and equals (==) 
returns true if the sets are of equal size and each element in 
one set is equal to exactly one element in the other set. 
 For set resources, we introduce another operator for set 
containment. This allows us to specify a constraint that 
requires the computed resource value (which is a set of 
values) to contain the constraint value.   

Resources at Runtime 

Even with fast dispatching algorithms, sequences must be 
issued in advance of their requested execution time, and 
the state of the system may change in the interim. 
Therefore, at execution time we want to prevent or 
postpone an activity or sequence from executing if that 
activity/sequence requires resources that are not yet 
available. To achieve this, we implement runtime resource 
constraints using a generalization of counting semaphores. 
 A counting semaphore works as follows. A global count 
is initialized to the number of units available for a 
resource. A task can acquire (take) a resource if the count 
is greater than zero, and in the same operation, the count is 
decremented. If the resource is not available (i.e. the count 
is zero), then the task will block until it becomes available. 
When a task is finished with the resource, it can release 
(give) the resource by incrementing the count. For 



 

 

example, a binary semaphore (i.e. mutex) can be 
implemented using the commonly found atomic instruction 
test-and-set: 
 
bool TestAndSet(bool* lock); 

 
TestAndSet will take the resource by assigning lock to 
true if and only if it is currently false. Otherwise, it will 
simply return true. We can later give back the resource by 
assigning lock to false. 
 More generally, consuming a resource is similar to 
acquiring a semaphore, but with a specified amount to be 
consumed, and with a specified bound on the resulting 
resource value after consumption. Execution on the calling 
task will block until bounding condition is met. A change 
in either the resource value or the restricting bounds will 
trigger a check on the condition. Producing a resource is 
similar to releasing a semaphore, but including the 
conditional check found in acquiring a semaphore. 
Resource production also has specified values for the 
amount to produce and the bounds on the resulting 
resource value. In this way, resource consumption and 
production only differ in the direction in which the 
resource is changed (decreased or increased, respectively). 
 For resources, we define atomic runtime operations for: 
producing, consuming, assigning, and checking a resource 
value. For the first three, in which the resource value is 
changed, the change will not occur until the given bounds 
cover the changed value. The resource check operation 
simply blocks the calling task until the resulting resource 
value will fall within the given bounds. In all cases, an 
optional timeout can be given to continue execution even 
when the resource constraint is not met. These operations 
must be atomic (i.e. non-interruptible) in order to guarantee 
that the resource value will not change by another task 
between the time that the bounding constraint is checked 
and the resource value is changed. 
 The four atomic resource operations are defined as 
follows: 
 
 
bool ResourceProduce(IdType id, 

                     ValueType val, 

                     ValueType min, 

                     ValueType max, 

                     TimeType t = 0); 

 

bool ResourceConsume(IdType id, 

                     ValueType val, 

                     ValueType min, 

                     ValueType max, 

                     TimeType t = 0); 

 

bool ResourceAssign(IdType id, 

                    ValueType val, 

                    ValueType min, 

                    ValueType max, 

                    TimeType t = 0); 

 

bool ResourceCheck(IdType id, 

                   ValueType min, 

                   ValueType max, 

                   TimeType t = 0); 

 
id is a reference to the shared resource. val is the amount 
to be produced, consumed or assigned to the resource. min 
and max specify the bounding constraint on the resulting 
value. t is the amount of time that the operation will be 
delayed for the bounding constraint. The functions return 
true if the bounding constraint was met and the operation 
performed. They return false if the bounding constraint 
was not met, the timeout was reached, and the resource 
operation was not performed. Using optional timeout 
values allows us to implement waits with interrupts instead 
of spin loops. 

Goals 

A goal represents the request for execution of an activity or 
sequence. Goals have the following attributes: 
 
Goal 

  <IdType, TimeType, PriorityType> 

{ 

  IdType                  id; 

  PriorityType            priority; 

  TimeType                start; 

  TimeType                end; 

  set<ResourceConstraint> constraints; 

} 

 
The id is used to uniquely identify the goal. The goal 
priority is used to rank goals. The start and end 
values specify the expected temporal scope of the goal. 
Due to system uncertainties at the time the goal is 
requested, the start and end times contain only the 
requested or expected values. Goals also maintain a set of 
resource constraints that must hold for the goal to execute. 
Similar to the start and end times, resource constraints 
contain the requested or expected values for the resources. 
 The goal attributes are used for selecting and dispatching 
goals for execution. In addition, a goal must specify what 
is to be done when it dispatched. Typically, this involves 
spawning a sequence to start execution at a given time. 
Essentially, we define goals as a summary of the intent and 
effects of one or more sequences. 

Example: File System 

When defining goals and resources, we worked to find a 
balance between a representation that is general and 
powerful, but also has the details required for efficient 
resource analysis and goal selection. We show the power 
of the representation with an example: controlling a file 
system. This example is of particular interest to us because 



// goal for creating a file 

FileHandleResource::FileHandleResource(Producer, end, 1)); 

  resources.insert(new FileMemoryResource::FileMemoryResource(Consumer, start, size)); 

  : Resource<int, int, int>(2, type, time, infinity, value, 1024, 0, 1024){} 

 

// resource constraint for the current set of files on disk 

FileSetResource::FileSetResource(ResourceType type, int time, set<int> value) 

  : Resource<int, int, set<int> >(3, type, time, infinity, value, {}, {}, {infinity}){} 

 

// resource constraint to prevent reads and writes from overlapping 

FileReadWriteResource::FileReadWriteResource(int start, int end) 

  : Resource<int, int, int>(4, Producer, start, end, 1, 0, 0, 1){} 

 

Figure 1 

// goal for creating a file 

FileHandleResource::FileHandleResource(ResourceType type, int time, int value) 

  : ResourceConstraint<int, int, int>(1, type, time, infinity, value, 100, 0, 100){} 

 

// resource constraint for the 1024 available Kbytes of memory 

FileMemoryResource::FileMemoryResource(ResourceType type, int time, int value) 

  : ResourceConstraint<int, int, int>(2, type, time, infinity, value, 1024, 0, 1024){} 

 

// resource constraint for the current set of files on disk 

FileSetResource::FileSetResource(ResourceType type, int time, set<int> value) 

  : ResourceConstraint<int, int, set<int>>(3, type, time, infinity, value, {}, {}, 

{infinity}){} 

 

// resource constraint to prevent reads and writes from overlapping 

FileReadWriteResource::FileReadWriteResource(int start, int end) 

  : ResourceConstraint<int, int, int>(4, Producer, start, end, 1, 0, 0, 1){} 

 

Figure 2 

many spacecraft (including EO-1) must deal with 
managing data products on an onboard file system. 
Typically, science activities write data to the file system 
while engineering procedures read from files for downlink 
and delete files to free up space. 
 First, the user has several goals that can be requested of 
the file system: create, delete, read, write, and format. 
Also, the file system has the following resource 
constraints: there is a limited number of file handles, there 
is limited disk space, performing an operation on a file 
requires that it exist on the file system, and finally, some 
operations cannot be done at the same time. 
 We can model this file system with five goals and four 
resource constraints, shown in pseudo C++ code in Figures 
1 and 2. A general resource constraint constructor takes 8 
arguments to specify values for the 8 attributes: id, type, 
start, end, value, initial, min and max. A 
subclass is defined for each of the 4 resource constraints in 
this example. A general goal constructor takes 4 arguments 
to specify values for the first 4 goal attributes: id, 
priority, start, and end. A subclass is defined for 
each of the 5 goal types in this example. 

 Each goal subclass constructor creates and adds the 
resource constraints for that goal type. Creating a file 
consumes one of the 100 available file handles, and 
produces a file with the specified unique ID. Deleting a file 
produces a file handle while consuming the file with the 
specified unique ID. It also produces file memory (1024K 
capacity) equal to the size of the file. Writing to a file 
consumes available memory equal to the size of the data 
written. Both writing and reading require that the unique 
file ID is a member of the set of available file IDs, and that 
no other reads or writes occur at the same time. 
 Each goal subclass also defines the required method for 
executing the goal. For example, the FileCreateGoal 
might call fopen() on a Unix operating system. 
 

Goal Selection Algorithm 

We present an algorithm for selecting goals with 
oversubscribed resources. The pseudo-code is shown in 
Figure 3. The algorithm can be categorized as a repair-
based approach with no search – the constraints and 



 

 

priorities define exactly which goals to choose. We focus 
on the re-selection that is required when the requested goal 
set changes, either by adding a new goal or removing an 
existing goal

1
. While making selections, goal parameter 

values (e.g. start times) are assumed to be fixed. The result 
is a set of non-conflicting “best” goals that have been 
selected for execution. After selections are made, 
conflicting goals are retained for additional consideration 
in the event of future changes to the goal set. In this 
implementation, conflicts are defined by shared resource 
interactions, and choices are made among conflicting goals 
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Changing parameters of a goal (e.g. start time, priority) 

can be implemented by removing the goal and adding it 

back with new values. 

using a strict priority rule. Only the highest priority goals 
are selected, with ties broken by earliest request time (i.e. 
first-come-first-served). 
 The dispatch algorithm maintains data structures that 
allow imminent, selected goals to be found efficiently. One 
set of goals is sorted by start time so that it can quickly 
find the next goal to dispatch. For each goal, the algorithm 
maintains a set of interacting goals (i.e. share a resource) 
so that it can quickly determine whether or not a goal 
should be selected. The goals are also sorted by priority so 
that the algorithm can focus on only the interacting goals 
that are higher priority. A goal will be selected and 
dispatched for execution if and only if it does not conflict 
with a higher priority goal, which does not conflict with an 
even higher priority goal, etc. For example, in Figure 4 we 

 1  void dispatch(minStart, maxStart) 

 2    for each Goal g in allGoalsSortedByTime 

 3      with startTime(g) >= minStart and startTime(g) <= maxStart 

 4      if g is in selectedGoals 

 5        start(g) 

 6 

 7  void addGoal(Goal g) 

 8    for each Goal ag in allGoals 

 9      if g interacts with ag 

10        add g to interacting goals of ag 

11        add ag to interacting goals of g 

12    add g to allGoals, allGoalsSortedByTime, and allGoalsSortedByPriority 

13    updateSelectedGoals(g) 

14 

15  void removeGoal(Goal g) 

16    remove g from allGoals, allGoalsSortedByTime, and allGoalsSortedByPriority 
17    updateSelectedGoals(g) 

18    for each Goal ag in allGoals 

19      remove g from interacting goals of ag 

20 

21  void updateSelectedGoals(g) 

22    for each Goal sg in selectedGoals 

23      with priority <= priority of g 

24      remove sg from selectedGoals 

25    for each Goal ag in allGoalsSortedByPriority 

26      with priority <= priority of g 

27      if wasStarted(ag) or isBestGoal(ag, selectedGoals) 

28        add ag to selectedGoals 

29 

30  bool isBestGoal(g, selectedGoals) 

31    initialize each Resource used by g 

32    add affects of g to each Resource used by g 

33    for each Goal ig in interacting goals of g 

34      if ig is in selectedGoals 

35        for each Resource r shared by ig and g 

36          add affects of ig to r 

37          if r is invalid 

38            return false 

39    return true 

 

Figure 3 



assume that overlapping goals conflict. Goal C is highest 
priority and is selected. Goal B is not selected because it 
conflicts with C. Because B is not selected, goal A is 
selected even though it is lower-priority than B. Therefore, 
goals A and C are the “best” goals. 
 
 Looking at the pseudo-code, adding and removing a goal 
each has 3 parts: updating the sets of interacting goals 
(lines 8-11 and 18-19), updating the sorted goal sets (lines 
12 and 16), and updating the selected goal set (lines 13 and 
17). When updating the selected goal set, we first de-
conflict the schedule by removing all goals with lower 
priority than the goal being added or removed (lines 22-
24). Higher priority goals are unaffected and can remain 
selected. Next, we re-evaluate each of the lower-priority 
goals (lines 25-28). Evaluating a goal g involves adding 
the resource effects of g to the effects of all selected (i.e. 
higher-priority) goals that interact with g (lines 31-36). If 
the combined resource effects are invalid, then g will not 
be selected (lines 37-38). Finally, dispatching goals within 
a given time range simply involves finding selected goals 
that fall in the range (lines 1-5). The dispatch function is 
intended to be called periodically with a small time range 
falling in the near future. 
 The low-priority conflicting goals are retained so that 
changes to the goal set can be made at any time (goals 
added, removed, or updated), and goals will be dispatched 
from the latest set of selected goals. Once a goal has started 
executing (determined by the “wasStarted” function on line 
27) it will thereafter be selected regardless of priority. A 
goal expires if it is unselected and falls in the past, or if it 
is selected and all of its interacting goals completely fall in 
the past. Expired goals are periodically removed from the 
goal sets (details not shown in pseudo-code). As a final 
note, the definition of “interacting” could be any arbitrary 
function that takes a pair of goals as input, and returns true 
or false. In this work, resources define which goals 
interact. 

Algorithm Analysis  

We now describe the run-time computational complexity 
of our goal selection algorithms. Selecting the best goals 
and updating the cache (lines 21-39) is: 
 
   O(MlgM + N(lgM + Xi(lgM + Si))) 

 
where N is the number of all goals, M is the number of 
selected goals, Xi is the number of interacting goals for 
goal i, and Si is the number of resources shared by goal i. 
Goals are stored in tree data structures with a log-based 

lookup. The first term comes from removing lower-priority 
goals from the selected goals (lines 22-24). The longer 
second term comes from re-selecting the best goals (lines 
25-39). 
 Assuming worst case, where each goal interacts with 
every other goal (Xi == N for all i), each goal uses all 
resources (Si == R for all i), and all goals are selected 
(M == N): 
 
   O(NlgN + N(lgN + N(lgN + R))) 

 
Or: 
 

   O(NlgN + NlgN + N2lgN + N2R) 

 
Since N2lgN dominates NlgN: 
 
   O(N2lgN + N2R) 

 
And assuming that N >> R, we have: 
 
   O(N2lgN) 

 
This is a theoretical worst case complexity. In practice, 
each goal will typically use a subset of the resources, and 
many of the goals will not be selected for execution. More 
importantly, goals interact with a small number of other 
goals (Xi is constant) due to the temporal scope of the 
resource constraints (i.e. effects on resources have limited 
extent). This gives us: 
 
   Θ(NlgN) 

 
Finally, this selection process is performed only when 
goals are added (line 13) or removed (line 17) from the 
dispatcher, which is assumed will be done at non-critical 
times. 
 Once we have cached the best goals, checking a specific 
goal is a simple lookup in the set. So dispatching a selected 
goal for execution (lines 1-5) is: 
 
   O(lgN + lgM) 

 
The first term is from the lookup for goals due for 
execution (lines 2-3) which we assume to be small 
(typically one). The second term is from the lookup in the 
set of selected goals (line 4). Assuming worst case, where 
all goals are selected (M == N), we get: 
 
   O(lgN) 

Algorithm Assumptions, Limitations, and 

Requirements  

We make several assumptions to keep the goal selection 
algorithm simple and efficient.  
 

Goal A  priority=1 

Goal B  priority=2 

Goal C  priority=3 

 
Figure 4 



 

 

•   We do not solve the general planning problem.  We 
only decide which high level goals should be 
selected. We do not search for alternate methods of 
achieving the high level goals. While less powerful, 
this tends to be more accepted by spacecraft 
engineers who prefer consistency and predictability. 
The tasks of goal decomposition and command 
execution are left to an executive or sequencing 
engine (e.g. VML). These systems can be very 
expressive and allow goals to be expanded in a 
complex, context-dependent manner. 

•   We do not solve the general scheduling problem. We 
only decide on which subset of the provided set of 
goals and activities to add to the plan, not on when 
they should be scheduled. Goals and activities must 
be submitted with predetermined start times. As an 
example, for an orbiting spacecraft with repeating 
science opportunities, this restricted form of 
planning can select which observation to perform on 
an orbit, but can not select an alternate overflight for 
a particular observation.  

•   We are only reasoning at the goal level. Resource 
reasoning is performed on goal resources which are 
assumed to be abstractions of the expected use of 
resources by the lower-level commands. We found 
this abstraction useful for many of the EO-1 
resource constraints  

•   We also assume that goals are ranked using the strict 
priority rule. In other words, any number of low-
priority goals can be trumped by a high-priority 
goal. When goals have equal priority, the goal that 
was requested first will take precedence (i.e. first-
come-first-served). EO-1 scientists were most 
comfortable with this simple priority scheme. 

 
It is worth pointing out that even with these restrictive 
assumptions the capabilities we are offering far exceed 
what is available on typical spacecraft today, either 
implemented in general commanding capabilities or 
custom flight software. Specifically, they are capable of 
representing the goal replacement capabilities currently 
operational in ASE. 
 Providing goal selection capabilities places some 
requirements on users when defining goals compared to 
defining activities or sequences strictly for the purpose of 
execution. First, users must provide some form of selection 
criteria. In our case, this is a priority for the goal. The user 
must also specify a summary of the expected resource 
usage for each goal. Where resource use at runtime may be 
intricate or even implicit, goal resources force the user to 
define resource use in an explicit and predictable way. 
Finally, users must provide an expected start and end time 
for the activity or sequence requested by the goal. This is 
necessary for predicting the scope of the resource use. 

Planning and Execution with VML  

Designed as a multi-mission application, VML is one of 
the most advanced onboard execution systems in 
widespread use for NASA missions [Grasso 2008]. 
Missions currently using VML include Odyssey, Spitzer, 
Dawn, MRO, and Phoenix. On these missions, VML has 
been used for a wide range of sequencing functions 
including: launch routines, orbit insertion, entry-descent-
and-landing, science acquisition, and fault response. 
 We have implemented goals, resources, and the goal 
selection algorithm as prototype extensions to VML. 
Runtime resources (generalized semaphores) are integrated 
into existing VML sequence execution capabilities. A new 
VML task, the Goal Manager (GM), implements the goal 
selection algorithm, and calls the dispatch function 
periodically. Finally, new user interface functions are 
added to allow goals to be added, removed, or changed. 
 At runtime, we ultimately need a set of executable 
commands that achieve the selected goals. Using existing 
VML 2.0 [Grasso 2004] capabilities, we employ a general 
pattern to the language to enable goal achievement with 
flexible and robust execution. Specifically, the language 
pattern consists of defining hierarchies, preconditions and 
effects familiar to the AI planning community. VML 
sequences for a goal or activity call other VML sequences 
that implement sub-activities or executable commands. 
When appropriate, command execution can be delayed to 
wait for the preconditions to be met, allowing more 
flexible execution. Finally, effects of the commands are 
monitored and appropriate responses can be defined to 
recover from failures and provide more robust execution. 

Autonomous Spacecraft Operations 

Our work was motivated by scenarios taken from the 
Autonomous Sciencecraft Experiment (ASE) used in 
operating the Earth-Observing 1 (EO-1) satellite. A 
prototype was implemented and tested on these scenarios. 
Figure 5 shows the system diagram for the prototype. In 
ASE scenarios, on-board science processing may generate 
new goal requests [Chien et al., April 2005]. Ground-based 
sensorweb processing may do the same using uplinked 
commands [Chien et al., June 2005]. We simulate goal 
request changes using a time-tagged file containing the 
change specifications. The EO-1 model consists of VML 
functions that implement activities for operating EO-1, 
including collecting and downlinking science data. The 
system was run on a typical EO-1 collect-downlink cycle 
where on-board resources (e.g. science data storage) are 
oversubscribed. At runtime, a simple spacecraft simulator 
was used to mimic command behavior, including effects 
on resources.  We have not yet run formal benchmarking 
experiments, but anecdotally the additional processing 
required for goal selection does not seem to have a 
significant impact on performance. 



 

 We also studied planning and 
sequencing problems from the Mars 
Reconnaissance Orbiter (MRO) and 
the Mars Exploration Rover (MER) 
missions. From these, we identified 
several scenarios that might benefit 
from this technology. First, we 
examine a data relay scenario, 
where low-priority MER data can 
be sent to Earth via MRO (Figure 
6). Initially, MRO can not service 
the downlink relay because it is 
collecting high priority science data. 
MER would check for signal, fail, 
and continue doing something else 
(e.g. take observations). However, 
if before the MER fly-over, an 
MRO anomaly makes the MRO 
science collect goal obsolete, the 
downlink relay would become 
possible. MER would check for 
signal, succeed, and both would 
initiate sequences necessary to relay 
the low-priority MER data. This 
scenario requires a dynamic goal set 
to allow the high-priority (but 
failed) science collect goal to be 
replaced by the low-priority 
downlink goal. 
 Next, we consider another data 

relay scenario, where critical MER engineering data must 
be sent to Earth as soon as possible (Figure 7). Initially, 
MRO has science goals planned, and goals for MER relay 
opportunities are stored on-board MRO at low-priority. At 
some point, an anomaly on MER creates the need to 
downlink high-priority data. On the next MER fly-over, 
MER would indicate the change in priority for the next 
relay opportunity. Assuming this is higher priority than the 
MRO science, MRO would replace the science goal with 
the MER relay goal. Again, a dynamic goal set is necessary 
for this type of scenario. 
 Finally, we consider a change in an MRO science 
request initiated by the science team (Figure 8). MRO 
maintains requests in an Integrated Target List (ITL) where 
each line/item in an ITL has a reference to a file describing 
the science request. Data volume is a major driver for 
science requests. With more available storage, scientist 
might choose longer durations or higher resolutions (i.e. 
larger image size). On-board software could automatically 
analyze the data volume, choose better parameters for the 
target, and replace the science request file referenced by 
the ITL. Changes to parameters may require constraints to 
be re-checked, and/or other sequences to be adjusted to 
make the change fit. This demonstrates a need for both a 
dynamic goal set and flexible execution. The ephemeris is 
a driver for the CRISM science instrument on MRO 
because of its scanning mechanism. Changes in 
orbit/ephemeris require changes to parameters used for 
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Figure 6: Blue indicates selected goals, yellow is 

rejected, and red is failed. 



 

 

pointing the instrument. Parameter calculations on the 
ground can be triggered from ephemeris changes, 

automatically generating a new file uplink request, and 
changing the on-board goal set. 
 

Related Work 

Much of the research in planning and goal selection has 
focused on more general, intractable problems. For 
example, [Smith 2004] looks at the more general problem 
that includes selecting goals and choosing their order when 
resource usage depends on the order of the goals (e.g., for a 
traveling rover). Both the Squeaky Wheel Optimization 
[Joslin and Clements 1999] and the Task Swapping 
[Kramer and Smith 2004] algorithms have been shown to 
improve oversubscribed schedules by re-scheduling tasks 
to allow more goals to fit. Instead, we look at a more 
constrained problem that can be solved in polynomial time, 
while still providing advanced autonomy capabilities 
useful for many embedded applications. 
 A considerable amount of work has been done in the 
area of online planning and execution. We list some of the 
implemented systems here. For example, SCL [ICS] 
provides a procedural language for spacecraft commanding 
similar to VML. VML blocks and the constructs they use 
are very similar to SCL scripts and constructs. Both 
provide functions, conditionals, variables, and loops. SCL, 
however, has a large component that allows the user to 

build and maintain a telemetry database. This is 
outside the scope of our work, which instead focuses 
on intelligent commanding. 
 ESL [Gat 1996] is an execution language for 
autonomous agents, implemented as an extension to 
the Common Lisp programming language. Therefore, 
programs in ESL can include any of the constructs 
provided by Lisp. Instead, we extend the VML 
feature set to include constructs similar to some 
found in ESL. By maintaining a limited set of 
features, we hope to contain the effort required to 
verify programs or sequences. 
 TDL [Simmons et al.] extends the C++ 
programming language to include the concept of a 
task. Like ESL, programs in TDL can take advantage 
of the generic language on which they are based. 
Providing such a rich language, however, has a cost 
when it comes to verifying programs written in that 
language. The capabilities we propose, while not as 
powerful, are similar to some provided by the TDL 
task types and constraints. 
 Titan [Williams et al. 2003] and Kirk [Kim et al. 
2001] are model-based executives. That is, they use a 
declarative specification of system behavior (plant 
model) to track system state and compute desired 
sequences of control actions. Titan combines a 
deductive controller (evolved from Livingstone, a 
mode-identification and reconfiguration capability 

flight validated on DS-1 [Williams and Nayak, 1996]) with 
a procedural state-based control sequencing module that 
allows for the specification of desired system state 
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Figure 8: Blue indicates selected goals and yellow is rejected. 



trajectories. By coupling deductive reasoning capabilities 
with the task control capabilities of an advanced procedural 
sequencer, the resulting executive demonstrates greater 
flexibility, fault-awareness and robustness than purely 
procedural executives. The Kirk executive provides 
additional capabilities for reasoning about activity-level 
contingencies, scheduling, and path planning. 
 The Mission Data System (MDS) [Dvorak et al. 1999, 
Barrett et al. 2004] is a comprehensive approach to systems 
engineering and a methodology for the design and 
development of control system applications. Our goals and 
resources are similar to the concepts of goals and state 
variables that are central to MDS. MDS goals express 
intent of the operator over a time interval, while MDS state 
variables are used to model both the system under control 
and the intent of the control system. 

Future Directions and Conclusions 

This work targets development and maturation of more 
advanced onboard resource reasoning capabilities to be 
available to future space missions via VML.  While the 
more typical orbital mission operations could benefit from 
onboard resource reasoning, future mission to dynamic 
environments would benefit even more.  For example, 
future missions to a comet would need to reason about 
state and resources to exploit observation of transient 
events such as outbursts and jets.  Round trip light times 
for such bodies means that ground control would not be 
timely enough to protect the spacecraft from these 
potentially hazardous events nor would it enable the 
spacecraft to image these exciting scientific events. 
 We have described a carefully constrained set of 
resource and priority reasoning capabilities designed to 
enable run-time planning within a limited computational 
environment.  This capability enables fast incremental 
selection of goals oversubscribing available resources in a 
strict priority order.  We have presented a computational 
complexity analysis of these algorithms as well as 
described its application to a number of typical spacecraft 
operations scenarios. 
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